AV-SUPERB: Audio-visual Representations and How to Evaluate Them

Shang-Wen (Daniel) Li FAIR shangwel@meta.com

Yuan (Roger) Tseng National Taiwan University r11942082@ntu.edu.tw

Outline:

- 1. Why audio-visual representations & notable recent works
- 2. The AV-SUPERB benchmark (ICASSP 2024)
- 3. Some noteworthy findings
- 4. What's next?

• For audio event classification,

audio events usually co-occur with visual actions

• For audio event classification,

audio events usually co-occur with visual actions

• For speech recognition,

visual input provides more context to what is being said

• For audio event classification,

audio events usually co-occur with visual actions

• For speech recognition,

visual input provides more context to what is being said

HYPOTHESIS: and then cut this piece on top of your shirt

5

• For audio event classification,

audio events usually co-occur with visual actions

• For speech recognition,

visual input provides more context to what is being said

HYPOTHESIS: and then cut the sleeves on top of your shirt

6

• For audio event classification,

audio events usually co-occur with visual actions

• For speech recognition,

visual input provides more context to what is being said

... which is why **audio-visual representation learning** is meaningful.

Audio & video frames from the same source as positive pairs

notable works include: <u>AVID-CMA</u> and <u>GDT</u> in action

recognition, and VisualVoice in speech separation

Audio-visual Fusion

AV-HuBERT

credit: Wei-Ning Hsu, https://aaai-sas-2022.github.io/static/media/Weining_Hsu_aaai2022_talk.7ac27a4c.pdf

13

 new state-of-the-art on audio event classification & audio-to-video retrieval

Existing audio-visual models are designed for different tasks

We can do all these tasks with one system: Our brains!

 \rightarrow How far are we from a model that can similarly generalize?

The AV-SUPERB benchmark: **Evaluation Protocol**

View representations as the output of feature extractors:

View representations as the output of feature extractors:

Each type of feature is evaluated on five tasks:

Train a small prediction head for each task:

Train a small prediction head for each task:

Training:

Inference:

The AV-SUPERB benchmark: **Some Noteworthy Findings**

1. Existing pretrained SSL models do not generalize to all tasks

Representation Type	Params.	Overall Score	Audio-Visual				Speech-Visual		
			AEC		AR		ASR	ASV	ER
			AS-20K	VGGSound	Kinetics- Sounds	UCF101	LRS3-TED	VoxCeleb2	IEMOCAP
			$(mAP \uparrow)$	$(Acc. \uparrow)$	(Acc. ↑)	(Acc. ↑)	$(CER \downarrow)$	$(\text{EER}\downarrow)$	(Acc. ↑)
Audio-only									
FBANK	0	36.69	2.8	5.12	24.73	19.91	20.07	27.16	51.52
HuBERT					# · · · /			15.58	62.14
AV-HuBERT*	Ev	aluat	o 5 ni	otrain	22 ha	t mo	alaha	14.45	58.54
RepLAI		aiuat	e o hi	cuam				32.58	57.53
AVBERT	fro	m dif	iferen	t dom	ains.	with		23.74	60.94
MAViL					,			20.71	59.46
Video-only	ha	ndcra	afted	teature	es as	base	lines		
HoG	0	45.57	1.5	5.01	10.70	20.01	71.40	36.32	35.83
AV-HuBERT*	103M	33.48	2.4	5.90	24.73	37.55	50.91	11.90	26.59
RepLAI	15M	36.40	5.5	13.5	46.68	56.69	71.33	36.95	40.72
AVBERT	37M	47.69	11.5	28.73	62.67	77.42	72.29	20.00	45.8
MAViL	87M	49.70	18.0	32.08	74.01	79.37	74.03	24.58	43.03
Audio-visual fusion									
AV-HuBERT	103M	53.42	13.3	32.69	52.23	41.46	2.75	9.46	46.45
AVBERT	43M	54.85	22.9	44.54	71.31	71.76	70.12	18.31	61.87
MAViL	187M	62.36	26.7	47.22	79.51	77.98	30.18	19.67	54.94

1. Existing pretrained SSL models do not generalize to all tasks

1. Existing pretrained SSL models do not generalize to all tasks

Intermediate Task

Downstream Task

			Au	dio-Visual	Speech-Visual			
	Intermediate Task	AEC		AR		ASR	ASV	ER
	Fine-tuning Data	AS-20K (mAP ↑)	VGGSound (Acc. ↑)	Kinetics-Sounds (Acc. ↑)	UCF101 (Acc. ↑)	LRS3-TED (CER↓)	VoxCeleb2 (EER ↓)	IEMOCAP (Acc. ↑)
MAViL								
Audio		28.3(+6.7)	44.79(+4.89)	62.93(+5.65)	50.10(+4.42)	23.99(+0.44)	21.77(-1.06)	58.17(-1.29)
Video	AudioSet-2M	20.9(+2.9)	36.68(+4.58)	77.39(+3.38)	86.93(+7.56)	78.59(-4.56)	23.93(+0.65)	39.15(-3.88)
Fusion		39.1(+12.4)	55.94(+8.72)	84.93(+5.42)	88.07(+10.09)	30.65(- <mark>0.47</mark>)	18.61(+1.06)	46.35(-8.59)

3. Representations from the last layer may be suboptimal

3. Representations from the last layer may be suboptimal

3. Representations from the last layer may be suboptimal

For AV-HuBERT fusion features, the peniultimate layer often contributes more

Heatmap of learned weights for each downstream dataset

What's next?

• Including more realistic, useful, or fundamental tasks,

such as retrieval, localisation, etc.

• Fairer comparision of models by unifying their training data, objective functions, or model architectures.

Check out our preprint on arXiv:

- Accepted to ICASSP 2024!
- In progress: an evaluation platform for researchers to benchmark new models

Paper link

Collaborators:

Yuan Tseng

Layne Berry

Yi-Ting Chen

I-Hsiang Chiu

Max Liu

Puyuan Peng

Yi-Jen Shih

Hung-Yu Wang

Haibin Wu

Chun-Mao Lai

Shang-Wen Li

David Harwath

Yu Tsao

Shinji Watanabe

Abdelrahman Mohamed

Chi-Luen Feng

Hung-yi Lee

Po-Yao Huang

Thank you for listening!